
Security Review Report
NM-0442-Token-Fleet

(April 7, 2025)

NM-0442-Token-Fleet - SECURITY REVIEW

Contents
1 Executive Summary 2

2 Audited Files 3

3 Summary of Issues 3

4 System Overview 4
4.1 Admin Flow . 4
4.2 Users Flow . 5

5 Risk Rating Methodology 6

6 Issues 7
6.1 [High] Deal::cancel uses totalSupply instead of totalAssets to verify fundraising target . 7
6.2 [Medium] Inconsistent update of lastUpdate . 8
6.3 [Medium] Referral tokens can be permanently locked for portfolio owners without referrers . 9
6.4 [Low] Deal::closeDeal does not check dealDealine . 10
6.5 [Low] Portfolio contract does not expose approve function for asset transfers to Deal contract 11

7 Documentation Evaluation 12

8 Test Suite Evaluation 13
8.1 Compilation Output . 13
8.2 Tests Output . 13
8.3 Automated Tools . 14

8.3.1 AuditAgent . 14

9 About Nethermind 15

1

NM-0442-Token-Fleet - SECURITY REVIEW

1 Executive Summary
This document presents the security review performed by Nethermind Security for the smart contracts of Token Fleet. Token Fleet is a
blockchain-powered platform that allows users to invest in cars through fractional ownership.

By owning tokens, users gain access to a diverse fleet of cars, earning a share of the rental profits and eventual sale proceeds. This
allows users to tap into the car rental market without the complexities of full ownership.

This security review focuses exclusively on the smart contracts listed in Section 2 (Audited Files). The audited code comprises of 769
lines of code written in the Solidity language, and the audit was performed using (a) manual analysis of the code base and (b) creation of
test cases. Along this document, we report 5 points of attention, where one is classified as High, two are classified as Medium, and two
are classified as Low. The issues are summarized in Fig. 1.

This document is organized as follows. Section 2 presents the files in the scope. Section 3 summarizes the issues. Section 4 presents
the overview of the system. Section 5 discusses the risk rating methodology. Section 6 details the issues. Section 7 discusses the
documentation provided by the client for this audit. Section 8 presents the compilation, tests, and automated tests. Section 9 concludes
the document.

High

Medium

Low
Low
40.0%

High
20.0%

Medium
40.0%

Severity

(a)

Acknowledged
60.0%

Fixed
40.0%

Status

(b)

Fig. 1: Distribution of issues: Critical (0), High (1), Medium (2), Low (2), Undetermined (0), Informational (0), Best Practices (0).
Distribution of status: Fixed (2), Acknowledged (3), Mitigated (0), Unresolved (0)

Summary of the Audit

Audit Type Security Review
Response from Client Regular responses during audit engagement
Final Report April 7, 2025
Repository Token Fleet
Commit (Audit) c036ac461477624bdcb1fdbfddeb64e66d6a8cda
Commit (Final) 4d82b7891d6c5f819ac20ac3921af183af83e162
Documentation Assessment High
Test Suite Assessment High

2

https://www.nethermind.io/smart-contract-audits
https://tokenfleet.io/
https://github.com/tokenfleet/dealermanager
https://github.com/tokenfleet/dealermanager/tree/c036ac461477624bdcb1fdbfddeb64e66d6a8cda/
https://github.com/tokenfleet/dealermanager/tree/4d82b7891d6c5f819ac20ac3921af183af83e162/

NM-0442-Token-Fleet - SECURITY REVIEW

2 Audited Files

Contract LoC Comments Ratio Blank Total
1 PortfolioRegistry.sol 161 24 14.9% 36 221
2 Deal.sol 352 94 26.7% 104 550
3 InsuranceVault.sol 7 1 14.3% 2 10
4 Portfolio.sol 81 24 29.6% 21 126
5 DealManager.sol 168 37 22.0% 43 248

Total 769 180 23.4% 206 1155

3 Summary of Issues

Finding Severity Update
1 Deal::cancel uses totalSupply instead of totalAssets to verify fundraising target High Fixed
2 Inconsistent update of lastUpdate Medium Fixed
3 Referral tokens can be permanently locked for protfolio owners without referrers Medium Acknowledged
4 Deal::closeDeal does not check dealDealine Low Acknowledged
5 Portfolio contract does not expose approve function for asset transfers to Deal contract Low Acknowledged

3

https://github.com/tokenfleet/dealermanager/blob/c036ac461477624bdcb1fdbfddeb64e66d6a8cda/src/PortfolioRegistry.sol
https://github.com/tokenfleet/dealermanager/blob/c036ac461477624bdcb1fdbfddeb64e66d6a8cda/src/Deal.sol
https://github.com/tokenfleet/dealermanager/blob/c036ac461477624bdcb1fdbfddeb64e66d6a8cda/src//InsuranceVault.sol
https://github.com/tokenfleet/dealermanager/blob/c036ac461477624bdcb1fdbfddeb64e66d6a8cda/src/Portfolio.sol
https://github.com/tokenfleet/dealermanager/blob/c036ac461477624bdcb1fdbfddeb64e66d6a8cda/src/DealManager.sol

NM-0442-Token-Fleet - SECURITY REVIEW

4 System Overview

4.1 Admin Flow

Fig. 2: Admin flow overview

The Admin Flow is designed for administrators who oversee the creation and management of Deals.

• Admins initiate the process by creating a Deal through the createDeal function in the DealManager contract. Each deal has specific
parameters, such as a fundraising target, deadlines, fees, and insurance requirements.

• Admins can cancel a deal if the fundraising target is not met within the specified deadline by calling cancelDeal.

• Once the target is reached, the admin can close the deal using closeDeal, transferring the raised funds to the designated dealer
and allocating insurance funds to a vault.

• Throughout the deal’s lifecycle, admins can add income generated by the deal using addIncome, which distributes profits to investors
after deducting fees. If additional insurance funds are required, admins can withdraw them using getInsurance.

• Finally, when all assets associated with the deal are sold, the admin can finalize the Deal using finalizeDeal, ensuring all remaining
funds are distributed appropriately.

Admins also have the ability to upgrade contract implementations at any time.

4

NM-0442-Token-Fleet - SECURITY REVIEW

4.2 Users Flow

Fig. 3: User flow overview

The User Flow is tailored for investors who interact with deals through their portfolios.

• Users begin by creating a portfolio via the createPortfolio function in the PortfolioRegistry contract. Each portfolio is repre-
sented as an ERC721 token, allowing users to manage multiple portfolios if needed.

• Users can interact with deals through their portfolios by calling callDeal, which enables them to invoke any function on a deal, such
as depositing funds, claiming rewards, or canceling their participation.

• All token transfers within the system are restricted to portfolios, ensuring that funds remain within the ecosystem. Users can also
specify a rewardReceiver address to receive rewards generated by their interactions with deals.

• Additionally, users can directly interact with deals for functions that do not involve token transfers, such as canceling their participa-
tion, accruing income, or depositing assets.

• Rewards accumulated in a portfolio can be claimed using claimRewards, and these rewards can also be used for future deposits

5

NM-0442-Token-Fleet - SECURITY REVIEW

5 Risk Rating Methodology
The risk rating methodology used by Nethermind Security follows the principles established by the OWASP Foundation. The severity of
each finding is determined by two factors: Likelihood and Impact.

Likelihood measures how likely the finding is to be uncovered and exploited by an attacker. This factor will be one of the following values:

a) High: The issue is trivial to exploit and has no specific conditions that need to be met;

b) Medium: The issue is moderately complex and may have some conditions that need to be met;

c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:

a) High: The issue can cause significant damage, such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage, such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage, such as bugs that are easily recoverable or cause unexpected interactions that
cause minor inconveniences.

When defining the impact of a finding, other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk

Impact

High Medium High Critical
Medium Low Medium High
Low Info/Best Practices Low Medium
Undetermined Undetermined Undetermined Undetermined

Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind Security also uses three more finding severities: Informational,
Best Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to pass
to the client formally;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

c) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.

6

https://www.nethermind.io/smart-contract-audits
https://owasp.org
https://www.nethermind.io/smart-contract-audits

NM-0442-Token-Fleet - SECURITY REVIEW

6 Issues

6.1 [High] Deal::cancel uses totalSupply instead of totalAssets to verify fundraising
target

File(s): Deal.sol

Description: Each deal has two deadlines: (a) a fundraising deadline; and, (b) a closing deadline. Users can cancel a deal if either
deadline is not met.

1 function cancel() external {
2 DealStorage storage $ = _getDealStorage();
3 _onlyStatus($, STATUS.RAISING_FUNDS);
4

5 if (totalSupply() < $.target) {
6 if (block.timestamp <= $.fundraisingDeadline) {
7 revert FundraisingDeadlineNotReached();
8 }
9 } else {

10 if (block.timestamp <= $.dealDeadline) {
11 revert DealDeadlineNotReached();
12 }
13 }
14 $.status = STATUS.CANCELLED;
15 emit DealCancelled();
16 }

The issue arises in how the target is checked. It incorrectly relies on totalSupply instead of totalAssets. Given that the ratio between
the asset and the supply token is not 1:1 and instead linear (for example, a malicious user can intentionally fund the Deal contract with the
assets directly through a transfer), the usage of totalSupply is incorrect.

Recommendation(s): Modify the mentioned check to use totalAssets() instead of totalSupply():

function cancel() external {
DealStorage storage $ = _getDealStorage();
_onlyStatus($, STATUS.RAISING_FUNDS);

- if (totalSupply() < $.target) {
+ if (totalAssets() < $.target) {

if (block.timestamp <= $.fundraisingDeadline) {
revert FundraisingDeadlineNotReached();

}
} else {

if (block.timestamp <= $.dealDeadline) {
revert DealDeadlineNotReached();

}
}
$.status = STATUS.CANCELLED;
emit DealCancelled();

}

Status: Fixed.

Update from the client: Fixed in commit 2d447e0

7

https://github.com/tokenfleet/dealermanager/blob/ab5d476d4dee1e40db6816182b174c9aa310766d/src/Deal.sol#L177
https://github.com/tokenfleet/dealermanager/commit/2d447e0b642d07ac70fd29f62feddb243653dbaf

NM-0442-Token-Fleet - SECURITY REVIEW

6.2 [Medium] Inconsistent update of lastUpdate
File(s): Deal.sol

Description: Users who deposit funds into deals are entitled to proportional rewards. They claim these rewards by calling Deal::claim,
which updates lastUpdate[user] to ensure the claimed portion is excluded from future claims:

1 function _claim(DealStorage storage $, address user, address receiver) internal returns (uint256) {
2 uint256 assets = reward(user);
3

4 ==> $.lastUpdate[user] = $.totalIncome;
5

6 if (assets > 0) {
7 USDC.safeTransfer(receiver, assets);
8 }
9

10 emit Claimed(user, receiver, assets);
11 return assets;
12 }
13

14 function reward(address user) public view returns (uint256) {
15 DealStorage storage $ = _getDealStorage();
16 uint256 shares = balanceOf(user);
17 return Math.mulDiv(shares, $.totalIncome - $.lastUpdate[user], totalSupply(), Math.Rounding.Floor);
18 }

However, a rounding issue can cause the claimable assets to be zero, despite updating lastUpdate[user]. This results in the system
marking the user as having claimed their income when they actually received nothing.

Consider the following example:

− The total assets deposited into the deal are 5M USDC, and the total supply is approximately 3M shares;

− Bob deposits 1.6K USDC, receiving 1K shares;

− 2.5K USDC is added to the deal contract as income;

− Bob calls claim to receive his share of the income. The reward function computes: 1K×2.5K / 3M = 0;

− Since assets is 0, Bob receives no rewards, but lastUpdate[user] is still updated, preventing him from claiming his rightful share
in future distributions;

Recommendation(s): Update lastUpdate[user] only when the calculated rewards are greater than zero:

function _claim(DealStorage storage $, address user, address receiver) internal returns (uint256) {
uint256 assets = reward(user);

- $.lastUpdate[user] = $.totalIncome;

if (assets > 0) {
+ $.lastUpdate[user] = $.totalIncome;

USDC.safeTransfer(receiver, assets);
}

emit Claimed(user, receiver, assets);
return assets;

}

Status: Fixed.

Update from the client: Fixed in commits 4b322a8 and 4d82b78

8

https://github.com/tokenfleet/dealermanager/blob/ab5d476d4dee1e40db6816182b174c9aa310766d/src/Deal.sol#L322
https://github.com/tokenfleet/dealermanager/compare/bf638303170b63d0e8d1c192622648c41c5e3326..4b322a8e77246e24279e660f4251fbf32248e5b3
https://github.com/tokenfleet/dealermanager/compare/538ac9462a6e2569652aa95cb966b9d521197a6d..4d82b7891d6c5f819ac20ac3921af183af83e162

NM-0442-Token-Fleet - SECURITY REVIEW

6.3 [Medium] Referral tokens can be permanently locked for portfolio owners with-
out referrers

File(s): DealManager.sol

Description: When raising funds for a deal via Deal::deposit, the DealManager::registerDeposit function is invoked. This function
tracks the deposited amount for each deal to account for referral rewards:

1 function registerDeposit(uint256 assets, address receiver) external {
2 DealManagerStorage storage $ = _getDealManagerStorage();
3

4 PortfolioRegistry registry = PortfolioRegistry($.portfolioRegistry);
5 address owner = registry.onlyWhitelistedPortfolio(uint256(uint160(receiver)));
6 ==> address referrer = registry.referrer(owner);
7 $.deals[msg.sender].deposits += assets;
8 ==> $.deals[msg.sender].referralDeposits[referrer] += assets;
9 }

Later, users can call claimReferralRewards to claim their referral rewards, which are distributed proportionally:

1 function _referralRewards(DealManagerStorage storage $, address deal, address user)
2 internal
3 view
4 returns (uint256)
5 {
6 DealData storage dealData = $.deals[deal];
7 return Math.mulDiv(
8 dealData.referralDeposits[user],
9 dealData.rewards - dealData.lastRewardClaim[user],

10 dealData.deposits,
11 Math.Rounding.Floor
12);
13 }

However, some portfolio owners may not have a referrer, causing registry.referrer(owner); to return the zero address. In such cases,
referral rewards are permanently locked to the zero address.

Recommendation(s): Modify registerDeposit to update referralDeposits only when a valid referrer exists:

function registerDeposit(uint256 assets, address receiver) external {
DealManagerStorage storage $ = _getDealManagerStorage();

PortfolioRegistry registry = PortfolioRegistry($.portfolioRegistry);
address owner = registry.onlyWhitelistedPortfolio(uint256(uint160(receiver)));
address referrer = registry.referrer(owner);
$.deals[msg.sender].deposits += assets;

- $.deals[msg.sender].referralDeposits[referrer] += assets;
+ if (referrer != address(0)) $.deals[msg.sender].referralDeposits[referrer] += assets;
}

Status: Acknowledged.

Update from the client: At the moment, all users need to have a referrer when they get whitelisted, but there is no check enforcing that
the referrer is not 0x0. However, only the owner or the whitelistSigner can make that mistake, and we treat them as trustworthy.

9

https://github.com/tokenfleet/dealermanager/blob/ab5d476d4dee1e40db6816182b174c9aa310766d/src/DealManager.sol#L79

NM-0442-Token-Fleet - SECURITY REVIEW

6.4 [Low] Deal::closeDeal does not check dealDealine

File(s): Deal.sol

Description: Each deal has two deadlines: (a) a fundraising deadline and (b) a closing deadline. Users can cancel a deal if either deadline
is not met. After successful fundraising, the deal manager calls Deal::closeDeal to transition the deal to the next phase. However, the
function does not check whether the dealDeadline has already passed:

1 function closeDeal(address dealer) external {
2 DealStorage storage $ = _getDealStorage();
3 _onlyDealManagerOwner($, _msgSender());
4 _onlyStatus($, STATUS.RAISING_FUNDS);
5 _nonZero(dealer);
6

7 if (totalAssets() < $.target) {
8 revert TargetNotMet();
9 }

10

11 uint256 treasuryFee = $.treasuryFee;
12 uint256 insuranceAmount = $.insurance;
13 uint256 dealAssets = totalAssets() - insuranceAmount - treasuryFee;
14

15 // Start deal
16 $.status = STATUS.IN_PROGRESS;
17

18 USDC.approve(address($.dealManager), treasuryFee);
19 $.dealManager.processFee(treasuryFee);
20 USDC.safeTransfer(dealer, dealAssets);
21 USDC.safeTransfer(address($.insuranceVault), $.insurance);
22

23 emit DealClosed(dealer);
24 }

While the cancelDeal function allows users to cancel an expired deal and we expect them to cancel deals closely after their deadline, the
closeDeal function should still validate the dealDeadline to prevent unintended deal progression past the allowed timeframe.

Recommendation(s): Add a check in closeDeal to check for the deal’s deadline

Status: Acknowledged.

Update from the client: Deadlines are meant as a mechanism for users to recover their assets if there are delays in executions. Given
that, if there are delays and no one cancels, we are fine with closing the deal anyway, as it just means users did not want to cancel.
Deadline is a safety mechanism for the user, not for the deal breaker for our processes.

10

https://github.com/tokenfleet/dealermanager/blob/ab5d476d4dee1e40db6816182b174c9aa310766d/src/Deal.sol#L366-L389

NM-0442-Token-Fleet - SECURITY REVIEW

6.5 [Low] Portfolio contract does not expose approve function for asset transfers
to Deal contract

File(s): Portfolio.sol

Description: Users are meant to interact with deal contracts through their portfolios. For instance, portfolios can interact with the Deal
contract to deposit the underlying assets. However, the issue is that depositing/minting assets on the Deal contract requires transfer
approval of the asset, and the Portfolio contract does not expose an approve function to grant spending allowances to the Deal contract,
which leads to transactions reverts. The current implementation of callDeal allows a workaround of this as it performs low-level calls to
any address and not necessarily the Deal contract, in which the portfolio owners can leverage this function to interact with the underlying
asset to approve for the deal contract.

1 function _call(address deal, bytes calldata data, address rewardsReceiver) internal returns (bytes memory) {
2 (bool success, bytes memory result) = address(deal).call(data);
3 if (!success) {
4 assembly {
5 revert(add(0x20, mload(0)), mload(0))
6 }
7 }
8 _claimRewards(rewardsReceiver);
9 return result;

10 }

However, this is not the intended behavior of the function.

Recommendation(s): Consider exposing a function to approve a token to be spent by a deal address

Status: Acknowledged.

Update from the client: It may be a nice-to-have, but a workaround exists using callDeal, and we may stick with this approach.

11

https://github.com/tokenfleet/dealermanager/blob/ab5d476d4dee1e40db6816182b174c9aa310766d/src/Portfolio.sol#L9-L10

NM-0442-Token-Fleet - SECURITY REVIEW

7 Documentation Evaluation
Software documentation refers to the written or visual information that describes the functionality, architecture, design, and implementation
of software. It provides a comprehensive overview of the software system and helps users, developers, and stakeholders understand how
the software works, how to use it, and how to maintain it. Software documentation can take different forms, such as user manuals, system
manuals, technical specifications, requirements documents, design documents, and code comments. Software documentation is critical
in software development, enabling effective communication between developers, testers, users, and other stakeholders. It helps to ensure
that everyone involved in the development process has a shared understanding of the software system and its functionality. Moreover,
software documentation can improve software maintenance by providing a clear and complete understanding of the software system,
making it easier for developers to maintain, modify, and update the software over time. Smart contracts can use various types of software
documentation. Some of the most common types include:

− Technical whitepaper: A technical whitepaper is a comprehensive document describing the smart contract’s design and technical
details. It includes information about the purpose of the contract, its architecture, its components, and how they interact with each
other;

− User manual: A user manual is a document that provides information about how to use the smart contract. It includes step-by-step
instructions on how to perform various tasks and explains the different features and functionalities of the contract;

− Code documentation: Code documentation is a document that provides details about the code of the smart contract. It includes
information about the functions, variables, and classes used in the code, as well as explanations of how they work;

− API documentation: API documentation is a document that provides information about the API (Application Programming Interface)
of the smart contract. It includes details about the methods, parameters, and responses that can be used to interact with the
contract;

− Testing documentation: Testing documentation is a document that provides information about how the smart contract was tested.
It includes details about the test cases that were used, the results of the tests, and any issues that were identified during testing;

− Audit documentation: Audit documentation includes reports, notes, and other materials related to the security audit of the smart
contract. This type of documentation is critical in ensuring that the smart contract is secure and free from vulnerabilities.

These types of documentation are essential for smart contract development and maintenance. They help ensure that the contract is
properly designed, implemented, and tested and provide a reference for developers who need to modify or maintain it in the future.

Remarks about Token Fleet documentation

The Token Fleet team was actively present in regular calls, effectively addressing concerns and questions raised by the Nether-
mind Security team. The codebase included natspec and protocol description that were insightful for the Nethermind Security
team to understand the codebase.

12

NM-0442-Token-Fleet - SECURITY REVIEW

8 Test Suite Evaluation

8.1 Compilation Output
$ forge compile
[] Compiling...
[] Compiling 83 files with Solc 0.8.26
[] Solc 0.8.26 finished in 3.67s
Compiler run successful!

8.2 Tests Output
$ forge test
Ran 7 tests for test/DealManager.t.sol:DealManagerTest
[PASS] testCreateDeal(string,uint256,uint256,uint256,uint256,uint256,uint256) (runs: 256, : 529151, ~: 562465)
[PASS] testDealCannotBeCreatedTwice(string,uint256,uint256,uint256,uint256,uint256,uint256) (runs: 256, : 1072687535,

~: 1072687519)↪

[PASS] testInitialization() (gas: 149577)
[PASS] testOnlyOwnerCanCreateDeal(string,uint256,uint256,uint256,uint256,uint256,uint256,address) (runs: 256, : 13184,

~: 13181)↪

[PASS] testOnlyOwnerCanSetTreasury(address,address) (runs: 256, : 12046, ~: 12046)
[PASS] testSetTreasury(address) (runs: 256, : 19257, ~: 19257)
[PASS] testTreasuryCannotBeZero() (gas: 10984)
Suite result: ok. 7 passed; 0 failed; 0 skipped; finished in 114.62ms (208.26ms CPU time)

Ran 4 tests for test/PortfolioRegistry.t.sol:PortfolioRegistryInitializationTest
[PASS] testInitialization(address,address) (runs: 256, : 301302, ~: 301302)
[PASS] testWrongBeaconAddress(address,address,address) (runs: 256, : 4140944, ~: 140804)
[PASS] testZeroOwner(address) (runs: 256, : 80385, ~: 80385)
[PASS] testZeroTreasury(address) (runs: 256, : 247506, ~: 247506)
Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 382.80ms (76.45ms CPU time)

Ran 5 tests for test/Deal.t.sol:DealTestInitialization
[PASS] testInitializeFailsIfFeeIsGreaterThan100(string,uint256,uint256,uint256,uint256,address,uint256) (runs: 256, :

329034, ~: 398246)↪

[PASS] testInitializeFailsIfFeeIsZero(string,uint256,uint256,uint256,address,uint256) (runs: 256, : 312950, ~: 286919)
[PASS] testInitializeFailsIfInsuranceIsNotIncluededInTheTarget(string,uint256,uint256,uint256,uint256,uint256,address,
uint256) (runs: 256, : 175002, ~: 208905)
[PASS] testInitializeFailsIfManagerIsZeroAddress(string,uint256,uint256,uint256,uint256,uint256,uint256) (runs: 256, :

166224, ~: 163722)↪

[PASS] testValidInitialization(string,address,uint256,uint256,uint256,uint256,uint256,uint256) (runs: 256, : 470744, ~:
504842)↪

Suite result: ok. 5 passed; 0 failed; 0 skipped; finished in 625.14ms (192.39ms CPU time)

Ran 8 tests for test/PortfolioRegistry.t.sol:PortfolioRegistryTest
[PASS] testChangeTreasury(address) (runs: 256, : 25534, ~: 25534)
[PASS] testCheckPortfolioOwner() (gas: 215005)
[PASS] testNewTreasuryIsNotZero() (gas: 13356)
[PASS] testOnlyOwnerCanChangeTreasury(address) (runs: 256, : 15736, ~: 15736)
[PASS] testOwnerWhitelist(address) (runs: 256, : 38418, ~: 38418)
[PASS] testUserWhitelist(address,uint256,uint256,uint256,address) (runs: 256, : 291217, ~: 291313)
[PASS] testWhitelistInvalidSignature() (gas: 19358)
[PASS] testWhitelistNonceAlreadyUsed(uint256) (runs: 256, : 58459, ~: 58459)
Suite result: ok. 8 passed; 0 failed; 0 skipped; finished in 625.26ms (600.63ms CPU time)

13

NM-0442-Token-Fleet - SECURITY REVIEW

Ran 43 tests for test/Deal.t.sol:DealTest
[PASS] testAccrueIncomeFailsWhenNotInProgress(uint256) (runs: 256, : 212996, ~: 213004)
[PASS] testAccrueIncomeSuccessful(uint256) (runs: 256, : 674950, ~: 674817)
[PASS] testAccrueIncomeWithInsurance(uint256,uint256) (runs: 256, : 840078, ~: 841943)
[PASS] testCancelFailsIfDealDeadlineNotReached(uint256) (runs: 256, : 329047, ~: 329085)
[PASS] testCancelFailsIfFundraisingDeadlineNotReached(uint256,uint256) (runs: 256, : 330048, ~: 329848)
[PASS] testCancelFailsIfNotRaising(uint8) (runs: 256, : 28099, ~: 28156)
[PASS] testCancelIfDealDeadlineIsPassed(uint256) (runs: 256, : 333475, ~: 333480)
[PASS] testCancelIfFundraisingDeadlineIsPassed(uint256,uint256) (runs: 256, : 334431, ~: 334513)
[PASS] testClaimRoundingErrors() (gas: 1283921)
[PASS] testClaimSuccessful(uint256) (runs: 256, : 751503, ~: 751631)
[PASS] testCloseDealFailsWhenAlreadyClosed(address) (runs: 256, : 482198, ~: 482181)
[PASS] testCloseDealFailsWhenNotDealManager(address,address) (runs: 256, : 343836, ~: 343804)
[PASS] testCloseDealFailsWhenTargetNotMet(uint256,address) (runs: 256, : 345521, ~: 345552)
[PASS] testCloseDealFailsWithInvalidDealer() (gas: 340984)
[PASS] testCloseDealSuccessful(address) (runs: 256, : 497987, ~: 497970)
[PASS] testCloseDealWithExactTarget(address) (runs: 256, : 482960, ~: 482943)
[PASS] testDepositEmitsTransferEvent() (gas: 336400)
[PASS] testDepositFailsWhenAmountIsLessThanMinInvestment(uint256) (runs: 256, : 23382, ~: 23695)
[PASS] testDepositFailsWhenExceedingTarget() (gas: 221086)
[PASS] testDepositFailsWhenNotRaisingFunds() (gas: 493266)
[PASS] testDepositSuccessful(uint256) (runs: 256, : 346789, ~: 346828)
[PASS] testDepositUpToTarget() (gas: 344076)
[PASS] testDepositWithDifferentReceiver() (gas: 449631)
[PASS] testFinalizeFailsWhenDealNotInProgress() (gas: 29401)
[PASS] testFinalizeFailsWhenNotDealManager(address) (runs: 256, : 499867, ~: 499850)
[PASS] testFinalizeSuccessful() (gas: 685611)
[PASS] testGetInsuranceFailsWhenNotDealManager(address) (runs: 256, : 30787, ~: 30787)
[PASS] testGetInsuranceSuccessful(uint256) (runs: 256, : 604844, ~: 605036)
[PASS] testGetInsuranceWithExcessiveAmount() (gas: 572310)
[PASS] testMintFailsWhenAmountIsLessThanMinInvestment(uint256) (runs: 256, : 34047, ~: 34350)
[PASS] testMintFailsWhenExceedingTarget() (gas: 222844)
[PASS] testMintFailsWhenNotRaisingFunds() (gas: 494815)
[PASS] testMintSuccessful(uint256) (runs: 256, : 364847, ~: 364893)
[PASS] testMultipleClaimsAndAccruals(uint256,uint256) (runs: 256, : 1567895, ~: 1567542)
[PASS] testMultipleDeposits(address,address,uint256,uint256) (runs: 256, : 856802, ~: 856949)
[PASS] testOnlyOwnerCanFill(uint256,address) (runs: 256, : 717785, ~: 717808)
[PASS] testReferralRewards(address,address) (runs: 256, : 1554322, ~: 1554351)
[PASS] testReinitializationFail(string,uint256,uint256,uint256,address,uint256,uint256,uint256) (runs: 256, : 33566, ~:

33359)↪

[PASS] testRewardAfterAWhileWithoutShares(uint256,uint256,uint256) (runs: 256, : 1734996, ~: 1738410)
[PASS] testRewardReturn0AfterBurningAndGettingBackShares(uint256,uint256,uint256) (runs: 256, : 1430668, ~: 1434223)
[PASS] testRewardShouldReturnTheSameForOthersAfterBurningShares(uint256,uint256,uint256) (runs: 256, : 1335676, ~:

1339822)↪

[PASS] testSharesEqualAssetsAtEndOfRaising() (gas: 344175)
[PASS] testTransferAutomaticallyClaims() (gas: 965578)
Suite result: ok. 43 passed; 0 failed; 0 skipped; finished in 625.31ms (6.64s CPU time)

Ran 5 test suites in 626.46ms (2.37s CPU time): 67 tests passed, 0 failed, 0 skipped (67 total tests)

8.3 Automated Tools
8.3.1 AuditAgent

All the relevant issues raised by the AuditAgent have been incorporated into this report. The AuditAgent is an AI-powered smart con-
tract auditing tool that analyses code, detects vulnerabilities, and provides actionable fixes. It accelerates the security analysis process,
complementing human expertise with advanced AI models to deliver efficient and comprehensive smart contract audits. Available at
https://app.auditagent.nethermind.io.

14

https://app.auditagent.nethermind.io

NM-0442-Token-Fleet - SECURITY REVIEW

9 About Nethermind
Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our Cryptography Research team is dedicated to continuous internal research while fostering
close collaboration with external partners. The team has expertise across a wide range of domains, including cryptography protocols,
consensus design, decentralized identity, verifiable credentials, Sybil resistance, oracles, and credentials, distributed validator technology
(DVT), and Zero-knowledge proofs. This diverse skill set, combined with strong collaboration between our engineering teams, enables us
to deliver cutting-edge solutions to our partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet’s approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

− Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

− Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

− Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

Learn more about us at nethermind.io.

15

nethermind.io

NM-0442-Token-Fleet - SECURITY REVIEW

General Advisory to Clients

As auditors, we recommend that any changes or updates made to the audited codebase undergo a re-audit or security review to address
potential vulnerabilities or risks introduced by the modifications. By conducting a re-audit or security review of the modified codebase,
you can significantly enhance the overall security of your system and reduce the likelihood of exploitation. However, we do not possess
the authority or right to impose obligations or restrictions on our clients regarding codebase updates, modifications, or subsequent audits.
Accordingly, the decision to seek a re-audit or security review lies solely with you.

Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

16

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Summary of Issues
	System Overview
	Admin Flow
	Users Flow

	Risk Rating Methodology
	Issues
	[High] Deal::cancel uses totalSupply instead of totalAssets to verify fundraising target
	[Medium] Inconsistent update of lastUpdate
	[Medium] Referral tokens can be permanently locked for portfolio owners without referrers
	[Low] Deal::closeDeal does not check dealDealine
	[Low] Portfolio contract does not expose approve function for asset transfers to Deal contract

	Documentation Evaluation
	Test Suite Evaluation
	Compilation Output
	Tests Output
	Automated Tools
	AuditAgent

	About Nethermind

